
Soĕware Development (2500)
Lectures 7 and 8: Introduction to Objects (Continued)

M.R.C. van Dongen

October 11, 2010

Contents
1 Overview 1

2 Widening 2

3 Casts 2

4 String Concatenation 3

5 Flipping Bits 4
5.1 A Simple Generator . 5
5.2 A Flexible Constructor . 6

6 RandomValues 7
6.1 Generating the Numbers . 8
6.2 Seeds . 9

7 Class versus Instance 9

8 Bullet Points 12

9 ForWednesday 12

1 Overview
Most of these lecture notes correspond to the last part of Chapter 2 of the book. However, some notes
do not correspond to any part of Chapter 2 and, indeed, the book.

1

2 Widening
ăis section studies arithmetic expressions withmixed-type operands and automaticwidening type con-
versions.

We’ve seen that Java is strongly typed. ăe type of all expressions must make “sense”. Still, Java is
pretty Ĕexible. For example, you can write ‘1 + 2.3’. So how does this work?

Consider the expression ‘⟨expr⟩1 + ⟨expr⟩2’, where ⟨expr⟩1 and ⟨expr⟩2 are numeric ex-
pressions and where the type of ⟨expr⟩1 is ⟨type⟩1, and the type of ⟨expr⟩2 is ⟨type⟩2. Consider
⟨type⟩1 and ⟨type⟩2 and choose the type with maximum “magnitude”. Let ⟨type⟩ be that type. ăe
expression ‘1 + 2.3’ is evaluated using the type ⟨type⟩. However, thismay involve converting ⟨expr⟩1
and/or ⟨expr⟩2 to ⟨type⟩ if ⟨type⟩1 and/or ⟨type⟩2 hava a smaller magnitude than ⟨type⟩. Next
the resulting expressions are added. ăe result has the type ⟨type⟩.

ăis works similar for other arithmetic operators.
For example, consider the expression ‘1 + 2.3’. ăe expression ‘1’ is an int literal. ăe expression

‘2.3’ is a double literal. ăe type double has the maximum magnitude. Java automatically converts
the int to a double. (ăis conversion is called widening.) ăe result of this widening conversion is
1.0. Next the operator is applied. ăis results in 3.3.

Widening of primitive type expressions never loses magnitude information. However, it may lose
information because of rounding. Here rounding may occur with the following conversions: int or
long to float, and float to a double, Still it is guaranteed that the source value is converted to
some— not the— nearest possible target value.

Table 1 lists the possible combinations of primitive source and target types for widening operations.
ăe table only lists the non-trivial type combinations (where the source and target types differ).

Source Type Target Type
short char int long float double

byte
√ √ √ √ √ √

short
√ √ √ √

char
√ √ √ √

int
√ √ √

long
√ √

float
√

Table 1: Source and target types for non-trivial widening operations.

3 Casts
As you may recall from Lecture 3, some primitive types require more storage space than others.

Java does not allow assignments to primitive type variables if, based on type information, there is
the possibility of loss of magnitude.

• For example, you cannot assign Ĕoating point values to integer variables.

2

• Likewise you cannot assign an integer value to an integer variable whose size (in bits) is smaller
than the size that is required to represent the value.

ăe same is true for arguments of methods. For example, you cannot pass a long value as an actual
parameter that corresponds to an int formal parameter.

ăe compiler only uses the information about the types of the values and variables that are involved.
ăis should explain why the following is not allowed: a long cannot be assigned to an int, regardless
of the value of the long.

long longVar = 0;
int intVar = longVar;

Don’t Try this at Home

ăe following demonstrates how to convert the long value to an int.

long longVar = 0;
int intVar = (int)longVar;

Java

Basically, the expression ‘(int)longVar’ tells the compiler: “Trustme, I know longVar is a long,
but just convert its value to an int.”. Explicit type conversions of the form ‘(⟨type⟩)⟨expression⟩’
are called casts. ăey take the value of ⟨expression⟩ and convert this value to the type ⟨type⟩.

Casting is right associative. If you think about it this makes sense:

int number = (int)(double)(float)1;
// same as: int number = (int)((double)((float)1));

Java

Casting has the highest possible precedence. ăerefore, the following won’t work:

int number = (int)0.0 + 1.0; Don’t Try this at Home

Adding parentheses solves the problem.

int number = (int)(0.0 + 1.0); Java

Numeric-to-numeric casts are always allowed. However, casts of the form primitive type-to-object
are not allowed. Likewise, casting fromobject type to primitive type is also not allowed. For themoment
we shall forget about other casts.

4 String Concatenation
Let ⟨string⟩1 and ⟨string⟩2 be two strings. ăe following may be used to concatenate the two
strings:

‘⟨string⟩1 + ⟨string⟩2’ .

ăe following demonstrates how this may be used in a Java program.

3

String hello = ”Hello”;
String world = ”world”;
System.out.println(hello + ” ” + world);

Java

You may also use ‘+’ in combination with a string and a numeric value. In this case, the numeric
value is automatically converted to string and then the two strings are concatenated. ăe following is an
example.

System.out.println(9 + ” = ” + 10 + ” - ” + 1);
System.out.println(1 + 2 + ” = ” + 3);
System.out.println(”” + 1 + 2 + ” = ” + 12);

Java

To understand this example, note that ‘+’ is leĕ associative, so the example is equivalent to the fol-
lowing.

System.out.println((((9 + ” = ”) + 10) + ” - ”) + 1);
System.out.println(((1 + 2) + ” = ”) + 3);
System.out.println((((”” + 1) + 2) + ” = ”) + 12);

Java

Notice that the ‘+’ operator can be used for different types of arguments:

• ‘⟨numeric type⟩1 + ⟨numeric type⟩2’;

• ‘⟨numeric type⟩ + String’;

• ‘String + ⟨numeric type⟩’; and

• ‘String + String’.

We say that the operator is overloaded.

5 Flipping Bits
ăis section is not in the book. It explains how to implement a simple bit-sequence generator object.
We shall implement the generator using a class called BitSequencer. ăe class has an instancemethod
‘int nextBit()’ which returns the next bit in the sequence. ăe đrst bit is 1. ăe next bit is always
the “opposite” of the previous bit, so given initial bit sequence

1 , 0 , 1 , . . . , b ,

the next bit is given by 1 − b.

4

5.1 A Simple Generator
In this section we shall implement the simple generator. Before we start, lets think about the state and
behaviour of our BitSequencer objects. ăe state is what the object knows. In our case we need to
know something that lets us compute the next bit in the sequence. For a newly created object the next
bit is 1. For “used” objects it is 1 − b, where b was the last returned bit. State is always implemented
using attributes (instance variables). We can represent our state using a single int attribute. Let’s call the
attribute nextBit. We initialise it to 1. When returning the next bit we Ĕip the attribute’s value.

To tell the java compiler that nextBit is an attribute, we simply declare it at the top level in the
class đle.

public class BitSequencer {
private int nextBit;

}

Java

Initialising the attributes of newly created object is done by the . To tell the  how to create
(construct) new objects, you provide a deđnition of constructor method for the object. Inside the body
of the constructor method you write the statements that initialise the object’s attributes.

ăe name of a constructor method is always the same as that of its class. Constructor methods have
no return a value, so they don’t have a return type.

In our case our object is a BitSequencer so we have to provide a deđnition of a BitSequencer
constructor. Our BitSequencer object has one attribute and we initialise it in the body of the Bit-
Sequencer constructor. ăis may be implemented as follows:

public class BitSequencer {
private int nextBit;

public BitSequencer() {
nextBit = 1;

}
}

Java

ăe behaviour is what the object does: returning the next bit. We were told the name of the method
that returns the next bit is nextBit(). We were also told the method returns an int.

Behaviour is always implemented using instancemethods. To implement thenextBit()behaviour,
you deđne an instance method called nextBit(). ăis may be done as follows.

5

public class BitSequencer {
private int nextBit;

public BitSequencer() {
nextBit = 1;

}

public int nextBit() {
int result = nextBit; // initialise return value.
nextBit = 1 - nextBit; // “update” nextBit.
return result; // return next bit in sequence.

}
}

Java

Having deđned theBitSequencer class, we can nowuse the class to createBitSequencer objects
and use thee objects to generate bit sequences.

public class Main {
public static void main(String[] args) {

BitSequencer seq1 = new BitSequencer();
BitSequencer seq2 = new BitSequencer();

System.out.println(seq1.nextInt()); // prints 1
System.out.println(seq1.nextInt()); // prints 0
System.out.println(seq1.nextInt()); // prints 1
System.out.println(seq2.nextInt()); // prints 1

}
}

Java

Note that each BitSequencer object has its own state: they don’t share their attribute.

5.2 A Flexible Constructor
In our previous implementation of the BitSequencer class, we initialised the nextInt attribute by
assigning it the value 1. As a default implementation this may be reasonable. However, what if a user
wishes a different initial value? Clearly changing the implementationof theBitSequencer constructor
by assigning 0 to nextInt won’t solve the problem. (Because then it’s impossible to start the sequence
with 1.)

To overcome problems like this, Java lets you write several different constructors per class. In the
following we add a constructor to the BitSequencer class. We keep our default constructor that ini-
tialises nextBit to 1. However, we also provide a method that initialises nextBit to a speciđc value.

6

public class BitSequencer {
private int nextBit;

public BitSequencer() {
nextBit = 1;

}

public BitSequencer(int initial) {
nextBit = initial;

}
}

Java

For sake of the example, it is assumed that initial is a valid value.

6 RandomValues
An inđnite integer sequence

n0 , n1 , . . .

is called a random integer sequence if you cannot predict the value of any member of the sequence from
the values before thatmember in the sequence. For example, it should be impossible to predict the value
of n2 using the values of n0 and n1.

It should be noted that the word ‘random’ does not provide any clues about howmany times a given
number is included in the đrst m members of a random integer sequence. For example, some numbers
may occur more frequently than others. However, for the purpose of this section it is assumed that if i
and j are two integers in the sequence, then

lim
m→∞

|{ nk : 0 ≤ k < m, nk = i }|
|{ nk : 0 ≤ k < m, nk = j }| = 1 ,

i.e. the number of occurrences of i and the number of occurrences of j in the đrst m integers in the
sequence is about equal as m becomes large.

It is impossible to generate random integer sequences but it is possible to generate pseudo-random
integer sequences. Here a sequence is called pseudo-random if it is “difficult” to predict the members of
the sequence.

Pseudo-randomnumbershavemany applications. For example, byproviding a little (pseudo-)randomness
itmakes it possible to implement an element of unpredictability, whichmay be a requirement for certain
games. Randomness also makes it possible to make certain computations more robust — in the sense
that they require less time on the average.

A pseudo-random number generator is an object that lets us generate a pseudo-random number se-
quence. ăis works just as with our BitSequencer object:

• ăere’s a constructor method for the generator (an object).

7

• You use the object’s instance method “next()” to get the đrst number in the sequence.

• Subsequent numbers are also obtained with “next()”.

Implementing a pseudo-random number generator is by no means a trivial exercise. Fortunately,
Javaprovides goodpseudo-randomnumber generatorswhich let you computepseudo-randomĔoating
point numbers as well as pseudo-random integers. ăere are two different approaches to generating
random numbers:

1. Use a dedicated object from the Random class. Generate the random numbers using the object’s
(instance) methods.

2. Use the method ‘static double random()’ from the Math class. ăis method can be used
without referring to any object: it is a class method.

6.1 Generating the Numbers
ăe following demonstrates how you generate pseudo-random integers using objects from the Random
class. ăe đrst line of the listing is special — it is called an import statement. An import statement tells
the java compiler that you want to use one or more non-standard classes. ăe import statement in the
example tells the java compiler that we want to use the non-standard class called Random, which is
part of the package java.util. Import statements should always occur at the start of a java source
đle (even if it includes JavaDoc comments).

import java.util.Random;
...
Random rand = new Random();
int random1 = rand.nextInt();
int random2 = rand.nextInt(⟨positive int⟩);

Java

ăe instance method ‘int nextInt()’ of the Random class returns a pseudo-random int value.
ăe result may be positive, zero, or negative. ăe instancemethod ‘int nextInt(⟨positive int⟩
)’ returns a pseudo-random int value in the range 0, …, ⟨positive int⟩ - 1.

As alreadymentioned, youmay also create randomnumberswith the classmethod ‘static double
random()’ from the Math class. In its basic form the call Math.random() returns a non-negative
pseudo-random double value which is less than 1.0. ăe following shows how to use the method to
construct random non-negative integer, i, such that 0 <= i && i < 8.

int i = (int)(8 * Math.random()); Java

To see how this works, notice that the call Math.random() returns a double, d, such that 0 <=
d && d < 1.0. Aĕer multiplying it by 8 we get a non-negative double which is less than 8. Casting
this double to an int we get a random int in the range 0–7.

8

6.2 Seeds
It is also possible to create Random objects as follows:

‘new Random(seed)’ .

Here seed is a long value that completely determines the resulting pseudo-random number sequence.
If you create a Random object with ‘new Random()’ then the seed which is used to create the

object is not speciđed explicitly. Instead, you rely on an implicit seed. If you create Random objects with
an implicit seed, the seed that is used to create the object typically depends on the time at which the
object was created.

When testing, you typically want reproducible results. So, if you just use ‘new Random()’ your
results are typically not be reproducible. ăis makes testing more When creating Random objects, you
should therefore make sure that the creation depends on the state of the soĕware: test-mode versus
production-mode.

ăe following shows the mechanism. We deđne two class methods which may be used to create
Random objects. Next we deđne two class variables called testing and defaultSeed. In test mode,
the attribute testing should be true; otherwise false. ăe class methods that create the Random
objects use defaultSeed if testing is true. ăis makes the resulting pseudo-random number se-
quences predictable, which usually makes testing easier. If testing is false then the class method
myRandom() returns a Random object with a seed that depends on the time and the class method
myRandom(long seed) returns a Random object which depends on the seed seed.

private static boolean testing = ⟨boolean value⟩;
private static long defaultSeed = ⟨long value⟩;

public static Random myRandom() {
return testing

? new Random(defaultSeed)
: new Random();

}

public static Random myRandom(long seed) {
return testing

? new Random(defaultSeed)
: new Random(seed);

}

Java

7 Class versus Instance
ăis section provides a little more insight in the difference between class and instancemethods and class
and instance variables.

As we’ve seen, Java has class and instancemethods. ăere are also class and instance variables. Class
methods and class variables are owned by the class. ăere is one method/variable per class. Instance

9

methods and instance variables are owned by instances. (Remember that an object is an instance of its
class. Hence the name instance method/variable.) ăere is one method/variable per instance of the
class.

ăenotation youuse for classmethodsdependsonwhere “you” are. Youmay alwayswrite ‘⟨class⟩.
⟨method⟩(⟨arguments⟩)’. However, inside the deđning class you may also write ‘⟨method⟩(
⟨arguments⟩)’. For variables this works similarly, so you may always write ‘⟨class⟩.⟨variable⟩’.
Inside the deđning class you may also write ‘⟨variable⟩’.

ăe following two classes should demonstrate the difference. First consider the following class.

public class Inside {
public static int variable;

public static void method() {
int var1 = variable;
int var2 = Inside.variable;
System.out.println(var1 + ” = ” + var2);

}
}

Java

Inside the class we have two notations for the class variable variable. Outside the class, we only
have one notation.

public class Outside {
public static void method() {

// System.out.println(variable); // Not allowed.
System.out.println(Inside.variable);

}
}

Java

Notice that the ‘System.out’ also demonstrates the notation because out is a class variable of the
class System.

ăe dot-notation for instance variables andmethods is similar. Youmay always use ‘⟨reference⟩.
⟨method⟩(⟨arguments⟩)’. Here ⟨reference⟩ is an object reference—usually an object reference
variable. However, inside the deđning class you may also write ‘⟨method⟩(⟨arguments⟩)’. For
attributes this works similarly, so you may always write ‘⟨reference⟩.⟨variable⟩’. But inside the
deđning class you may also write ‘⟨variable⟩’.

ăe dotless notation for instance variables and instance methods is only allowed inside instance
methods. Inside a given instance method you may use the notation ‘this’ for the “current” object,
i.e. the object that called the method: it owns the method. Using ‘⟨instance variable⟩’ without
dot-notation is shorthand notation ‘this.⟨instance variable⟩’. For instance methods this is the
same. So ‘⟨instance method⟩(⟨arguments⟩)’ means ‘this.⟨instance method⟩(⟨arguments⟩
)’.

ăe following example should explain the difference. ăe two instance methods are (effectively)
identical.

10

public class Inside {
private int attribute;

private static void classMethod(int var) {
System.out.println(var);

}

public void instanceMethod1() {
classMethod(attribute);

}

public void instanceMethod2() {
classMethod(this.attribute);

}
}

Java

public class Outside {
public static void main(String args[]) {

Inside inside = new Inside();
inside.instanceMethod1();
inside.instanceMethod2();

}
}

Java

You can always simulate instance methods with class methods. However, this comes at the price of
an extra parameter to represent the “current” object (this). ăe following two classes should make this
clear.

public class Simulation {
private int attribute;

public static void classMethod(Simulation current) {
System.out.println(current.attribute);

}

public void instanceMethod() {
classMethod(this);

}
}

Java

11

public class Main {
public static void main(String args[]) {

Simulation simulation = new Simulation();
// The following calls are effectively identical.
simulation.instanceMethod();
Simulation.classMethod(simulation);

}
}

Java

To see how this works, notice that the instance method instanceMethod is called in the main.
It is called using the dot-notation, so the method is called by “remote control”. ăe object that calls
the method is the object which is referred to by the variable simulation. ăis makes that object the
“current” object in the instancemethod. So effectively, “this” in the instancemethod andsimulation
in the main refer to the same object. Next, the instance method in the Simulation class calls the class
method with this. ăis is equivalent to calling the class method with ‘simulation’ as its argument,
which is the second call in the main.

8 Bullet Points
ăe following are some of the more important concepts from Chapter 2.

• O lets you extend a program without having to touch previously tested, working code.

• All Java code is deđned in a class.

• A class is an object blueprint.

• Objects govern themselves. ăey take care of themselves. How they do this shouldn’t matter to
you.

• Objects have state and behaviour.

• ăe state is determined by the instance variables.

• ăe behaviour is determined by themethods.

• A class may inherit instance variables and methods from a more abstract superclass.

9 ForWednesday
Study Chapter 2, solve the puzzles from Chapter 2, and carry out the exercises from Chapter 2.

12

